SHENZHEN SENSOR ELECTRONIC TECHNOLOGY CO, LTD.

Ultrasonic parking space detector user manual

CE-U0#-34W2 (V1.0)

1 Overview

Ultrasonic parking space detector is a detector that uses ultrasonic reflection method to detect the presence of an object within a distance, the best detection location is installed horizontally in the ceiling, basipetal detection, best fit to install on the top of the parking space. Ultrasonic parking space detector adopts RS485 interface for remote communication.

Features:

- I With three circuits relay output, can be used to control the electronic lock.
- I The baud rate and address can be modified remotely.
- With two circuits power-line terminal and RS485 port terminal, easy for installation.
- I With local communication tips and ultrasonic receiving exception tips.
- With wide power supply range, AC current 9-30V powered.
- Adjustable detection distance, 0.5 meters per level, the maximum distance is up to 4 meters.

2 Case Style

Parking space detector CE-U01-34W2 outline dimension: Φ 100X48 mm LED indicator light CE-LED-A outline dimension: Φ 74X35 mm

Figure 1. CE-LED-A outside drawing

Figure 2. CE-U01-34W2 outside drawing

SIENT SHENZHEN SENSOR ELECTRONIC TECHNOLOGY CO,.LTD.

W2--- outline structure

Figure3 .product model selection table

4 Specifications			
Product main model	U01-34W2	U02-34W2	LED-A
Product name	Ultrasonic parking space	Ultrasonic parking space	parking space indicator light
	detector	detector	
Communication	RS485 interface; Address 1-63;	Data format: N、8、1	
interface	Baud rate: 4800、9600 bps are op	tional.	
Data update cycle	3 seconds		
Temperature/ humidity	Operating temperature:-20-+60°C	C, humidity 95%, No dew and	
	non-corrosive gases places.		
Auxiliary power supply	24VDC	5VDC	
Power consumption	U01-T4W2 power consumption<2		
	U02-T4W2 power consumption<5		
Lightning surge	power input terminal ±2KV;volt	age measurement terminal±2KV;	
	communication interface±2KV		
Output	U02-T4W2 with three circuits rela	Red, Green double colors	
		are highlighted	
Measurement range	Four levels measurement range set		
setting			

SHENZHEN SENSOR ELECTRONIC TECHNOLOGY CO, LTD.

	I	Can set address and detection distance through dial switch, the	
		detection distance is four levels adjustable.	
Functions	I	Can set address and baud rate through RS485 command.	
	L	Make the ultrasonic indicator flashing when there is no car	
		through RS485 command.	
	L	ultrasonic detector is equipped with a red, green double color	
		highlight indicator light, light is red when there is a car in the	
		parking space, light is green when there is no car in the parking	
		space.	
	L	Standard MODBUS communication protocol RS485 interface	
		communication, agreement can also be made according to the	
		user's requirement.	
		-	

5 The whole device wiring diagram and the pin definition

5.1 Wiring board wiring diagram

Figure 5, RJ11 crystal head wiring diagram

	Sheet I	Connection pin of	on sheet		
Pin	Name	Description		Name	Description
1	VIN	power input anode	7	VOUT	power output anode
2	GND	power input cathode	8	GND	power output cathode
3	D+	RS485 interface signal anode	9	D+	RS485 interface signal anode
4	D-	RS485 interface signal cathode	10	D-	RS485 interface signal cathode
5	COM1	The first circuit relay common	11	COM2	The second circuit relay
		terminal			common terminal
6	J1	The first circuit relay normally	12	J2	The second circuit relay
		open terminal			normally open terminal
			13	J3	The third circuit relay normally
					open terminal
			14	COM3	The third circuit relay common
					terminal

5.2 Pins definition as follows

Unit 501,BLDG C, BA**Ø**FU Jewelry Garden, 33 BULAN Road, Longgang district, Shenzhen City, China Post code: 518049

6. Mounting method

Use screw to fix the host (figure2 CE-U01-34W2 outline drawing) of the ultrasonic parking space detector to the probe position (the probe underside with four holes fixed disc); Pass the wiring board which connected to the host (figure4 detector wiring board diagram) insert the RJ11 crystal head that on the connecting wire (figure5 crystal head wiring diagram); Then release the connecting wire, the LED indicator light (figure1 CE-LED-A outline drawing) on the other end of the connection line is fixed in the indicator position with the screw (the indicator light underside with four holes fixed disc);

Figure1. CE-LED-A outline drawing

Figure2. CE-U01-34W2 outline drawing

7 Dial switch setting

7.1.Dial switch definition (0: OFF 1: ON)

Sheet 2

Dial switch definition sheet

B8	B7	B6	B5	B4	B3	B2	B1
Measurement range setting				Ado	dress setting		

7.2 Measurement range setting (0: OFF 1: ON)

Sheet 3

measurement range dial switch setting sheet

B8	В7	Distance (meter)
0	0	1.5
0	1	2.0
1	0	2.5
1	1	3.0

Measurement range is achieved by setting the dial switch. The dial switch setting increase 0.5 meters per step, four steps in total (see sheet3). Deduct 0.5 meters according to the actual installation height when setting the dial switch, refer to the sheet2.

Example of measurement range dial switch setting, actual installation height is 2.6 meters, deduct 0.5 meter, refer to sheet3, choose approach value 2.0 meters, set the dial switch B8 to the OFF, B7 to ON. At this moment, height is less than 2.0 meters, parking space information instruction light turns green, parking space light turns red, height is more than 2.0 meters, parking space information instruction red light is off, green light is on.

7.3 Address setting (0: OFF 1: ON)

Sheet 4	communication address setting sheet							
B6	B5	B4	B3	B2	B1	Address value		
0	0	0	0	0	1	1		
0	0	0	0	1	0	2		
0	0	0	0	1	1	3		
0	0	0	1	0	0	4		
1	0	0	0	0	0	32		
1	0	0	0	0	1	33		
1	0	0	0	1	1	34		
1	1	1	1	1	1	63		

Communication address is 1-63.

8 MODBUS protocol

8.1 Data message format

(1), Function code 03H--- To read the contents of registers from the slave equipment

Tł	ne message from the master equip	ment
	Address of the slave equipment	(01H

Address of the sla	ve equipment	(01H-FFH	1 byte)	
Function code	(03H	1 by	te)	
Address of the first	st register	(2 by	tes)	
Quantity of registe	ers	(2 bytes))	
CRC code	(2 bytes	5)		
The correct responded message from the slave equipment				
Address of the sla	ve equipment	(01H-FFH	1 byte)	
Function code	(031	H 1 byte	e)	
Byte count	(2*quantity	of registers	1byte)	
Data section	(contents of re	gisters 2*	* quantity	
of registers bytes)				
CRC code	(2 b	ytes)		

(2), Function code 06H---To set(write)data of registers of the slave equipment

	The message from the master equipment					
	Address of the slave equ	uipment	(01H-FFH	1byte)		
	Function code	(06H	1byte)			
	Address of the first regi	ster	(2byte	es)		
	The data written to the r	(2by	ytes)			
	CRC code	(2b	ytes)			
]	The correct responded me	ssage fro	m the slave eq	luipment		
	Address of the slave equ	uipment	(01H-FFH	1byte)		
	Function code	(06H	1byte)			
	Address of the register		(2bytes	s)		

The message from the master equipment

Unit 501, BLDG C, BAOFU Jewelry Garden, 33 BULAN Road, Longgang district, Shenzhen City, China Post code: 518049

The data written to the registers		(2bytes)	
CRC code	(2 bytes)		

(3), Function code 10H--- To set(write)data of multiple registers of the slave equipment

The message from t	the master equipment
--------------------	----------------------

	-				
Address of the slave equipment	t (01H-FFH 1byte)				
Function code (10	H 1byte)				
Address of the first register	(2bytes)				
Quantity of registers	(2 bytes)				
Data section byte count (2*quantity of registers 1 byte)					
The data written to the reg	isters (2* quantity of				
registers 个字节)					
CRC code (2	bytes)				
The correct responded message fi	rom the slave equipment				
Address of the slave equipment	t (01H-FFH 1byte)				
Function code	(10H lbyte)				
Address of the first register	(2 bytes)				
Quantity of registers	(2 bytes)				
CRC code (2 by	/tes)				

Note: 1) the low order byte of CRC code is before its high order byte. Address of register, quantity of registers, contents of register(Data),their high order byte is before their low order byte.

2) The length of the register is 16 bits(2 bytes).

8.2 Read write registers

The Modbus function code 30H can read the contents of all the below register addresses;

Address of register (Hex)	Contents of register	Quantity of	Attribute of register	Range of data
		registers	<u> </u>	
0000H	Product information	2	Read only	
0002H	Address	1	read/write	1~63 or 255
				(note1)
0003H	Baudrate	1	read/write	$1 \sim 3 \pmod{2}$
0004H	Status of parking space	1	Read only	0~2 (note 3)
0005H	Measuring height	1	Read only	0~4000mm
				(note 4)
0006H	Control the relay	1	Write only	0~4(note 5)
0007H	Control the parking	1	Write only	0~2 (note 6)
	space indicator light			

Note: 1) Write address data 255, the address is set by the dial switch, write data is 1~63, address is the written data, other written data is invalidate.

2) 1 indicates 2400bps; 2 indicates 4800bps; 3 indicates 9600bps.

- 3) 0: No car; 1: The parking space has been parked; 2: Parking space fault.
- 4) Measuring height display 9999 means exceed the vehicle range.
- 5) Relay release: 1: relay 1 attracts gathers; 2: relay 2 attracts gathers; 3: relay 3 attracts gathers

Unit 501,BLDG C, BA**Ø**FU Jewelry Garden, 33 BULAN Road, Longgang district, Shenzhen City, China Post code: 518049

SHENZHEN SENSOR ELECTRONIC TECHNOLOGY CO, LTD.

6) 0: Parking space indicator light flicker free; 1: Paring space indicator light red light flash; 2: Parking space indicator light green light flash.

8.3 command illustrate

Example1: read the parking space status data of product No.1

Send the command:

Address of the slave equipment	Function code	Address of the first register		Quantity of	of registers	CRC-L	CRC-H
01H	03H	00H 04H		00H	01H	C5H	СВН
feedback data:							
Address of the							

Address of the slave equipment	Function code	Data section byte count	contents of	fregisters	CRC-L	CRC-H
01H	03H	02H	00H	00H	B8H	44H

Note: Parking space status data is 0000H, that is the parking status without a car.

Example 2: modify address (The address is changed from the original No.01 to No.02),:

Send the command:

Address of the slave equipment	Function code	Address of the first register		The data w regi	ritten to the sters	CRC-L	CRC-H
01H	06H	00H 02H		00H	02H	E9H	САН
foodbools datas							

feedback data:

Address of the slave equipment	Function code	Address of the first register		The data w regi	ritten to the sters	CRC-L	CRC-H
01H	06H	00H	02H	00H	02H	E9H	CAH

Example 3: modify address and baud rate command illustrate (The address is changed from the original No.01 to No.02, baud rate change to 9600bps)

Send the command:

Address of the equipment	Function code	Addre the f regi	ess of first ster	Quant regis	tity of sters	Data section byte count	The	e data w regi	vritten to isters	the	CRC-L	CRC-H
01H	10H	00H	02H	00H	02H	04H	00H	02H	00H	03H	93H	B7H

feedback data:

Address of the slave equipment	Function code	Address of the first register		Quantity of registers		CRC-L	CRC-H
01H	10H	OOH	02H	OOH	02H	EOH	08H

9 Operation attention

- I The dial switch must be set in place.
- I The dial switch status change is valid after 5S.
- I Double 12PIN wire must be insert in place.
- Communication address is not in the range of 1~63, the detector still can control the red green light of the parking space detector indicator light switch normally, but can not communicate with node controller.

